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FAR-FIELD FEATURES OF THE KELVIN WAKE

A. Barwell snd F. Noblesee

David W, Taylor Naval Stip Resenrch and ‘Development Center
Bethesda, Marylsnd 20084

ABSTRACT

The classical Kelvin wake trailing a ship advancing
at constant speed in calm water is studied. In particular,
asymptotic expressions for determining the fac-field wake,
at large distances behind the ship, are investigated
numerically. This analysis, in which surface tension and
nonlinearities are ignored, indicates that the divergemt
waves of a surface ship generally are infinitely steep at the
track of the ship, even though their amplitude vanishes
there; this result is theoretically:possible because the
wavelength of the divergent waves vanishes at the track of
the ship. Inasmuch as infinitely-steep water wives cannot
exist in reality, the linear no-surface-tension analysis
presented in this study suggests that no divergent waves
can exist within a certain region:in the vicinity of the
track of the ship, and that the Kelvin wake contains three
distinct regions: (i) an inner region where only transverse
waves can exist, (i) an outer region where both transverse
and divergent. waves are present, and (iii) an intermediate
region at the boundary between the inner and outer
regions where short steep divergent waves, as well as
transverse waves, can be found. Numerical resuits for a
simple bow form show that the inner region is quite
narrow, and that the wavelength of the divergent waves at
the boundary of the inner region is of the order of | to
20 cm, depending on the speed of the ship. These results
appedr to be consistent with the narrow V-wakes observed
in some SAR images of ship wakes. The analysis
presented in this study may thus provide a partial
explanation for these observations. However, the small’
wavelengths mentioned above indicate that the divergent
waves in the vicinity of the track of the ship are likely to
be significantly altered by surface tension, which should
therefore be included in a more realistic analysis,

INTRODUCTION

It has been observed, e.g. [1,2,3], that images of
ship wakes taken by the SEASAT SAR (Synthetic
Aperture Radar) and other airborne SAR sysiems
sometimes reveal fong, narrow wakes extending back
several miles behind ships. According to Swanson [3],
“thére appears a narrow, dark band along the centerline
of the ship wake, widening slightly with distance away

from the ship. Often accompanying these dark regions, at
a slightly targer angle, are bright fines, which show up
especially well on X-band SAR images'*. The apparent
included angle of this narrow wake is much smaller- that
that corresponding 10 the Kelvin cusp line.

Several theoretical explanations of the features
observed in SAR images of ship wakes have been
proposed {3,4,5,6). The proposed explanations include
interactions between the cross currents created by a ship in
its' wake and surface gravity waves |1,6) and the occurence
of a sharp peak in the amplitude of the divergent waves
in the Kelvin wake for a ship form having a large flare
angie (5]. However, there currently appears to be no
convincing electrodynamic or hydrodynamic explanation of
the observations. It thus seems necessary to investigate in
detail cach one cf the proposed possible explanations in
order to determine whether one, or possibly a combination
of several, of them does in fact provide a satisfactory
theoretical interpretation of the SAR images of ship
wakes,

The classical Kelvin wake trailing a ship advancing-
at constant speed in calm water is examined in this study.
"Viscosity, surface tension and nonlinearities are ignored in
this preliminary analysis, and irrotationsl flow is assumed.
The-analysis and related numerical results for a simple
ship bow form have led to several conclusions and
recommendations for further studies which are presented
at the end of the paper. Only two conclusions that may
be related 10 some of the features observed in SAR
images of ship wakes are discussed here.

It was previously found by Scragg [5] that, for a
ship bow form with a large flare angle, the zeroth-order
slender-ship approximation to the far-field wave-amplitude




function given in Noblesse [7] predicts a sharp peak in the
value of the amplitude of the divergent waves at an angle
from the track of the ship equal to approximately haif the
bow entrance angle. This finding of Scragg has been
verified in this study, as may be seen from figures 15, 16
and 18. Furthermore, the magnitude of the wave-
amplitude peak has been found to increase very rapidly as
the Froude number decreases below a certain threshold
value. This peak thus appears to be a large-flare low-
Froude-number feature. For the simple ship bow form
considered in this study, the peak in the amplitude of the
divergent waves in the Kelvin wake occurs along & line at
6° from the track of the ship. It may be found from
equation (30a) that the wavelength of the divergent waves
along this line varies between 0.7 m and 4.5 m for a ship
with speed varying between 10 knots and 25 knots,
respectively.

The other conclusion of this study that may be
related to the narow-V-wakes observed in some SAR
images of ship wakes is the result that the divergent waves
of a surface- ."ip are infinitely steep at the track of the
ship, even though their amplitude vanishes there. This
result is theoretically possible because the wavelength of
the divergent waves vanishes at the track of the ship. A
similar result was previously obtained by Sharma [8] who
found that the Michell thin-ship approximation for a thin
and deep strut-like ship form predicted infinite slopes for
the divergent waves at the track of the ship. Inasmuch as
infinitely-steen water waves cannot exist in reality, the
foregoing result suggests that no divergent waves can exist
within a certain region in the vicinity of the track of the
sh’p, and that the Kelvin wake contains three distinct
regions: (i) an inner region where only transverse waves
can exist, (ii) an outer region where both transverse and
divergent waves are present, and (iii) an intermediate
region at the boundary between the inner and outer
regions where short steep divergent waves, as well as
transverse waves, can be found.

Numerical results for a simple bow form show that
the “no-divergent-wave” inner region is quite narrow, as
may be seen from figure 20 showing the Kelvin cusp line
(angle ~v 19°28"), the line along which the amplitude of
the divergent waves exhibits a peak (angle ~ 6°), and the
three lines along which the steepness of the divergent
waves is equal to 1/20, 1/15 and 1/7 (chain line close to
the track of the ship). The latter three lines, along which
the divergent waves are steep, lie much closer to the track

e e UM YO AR E A

of the ship than the line along which the steepness of the
divergent waves exhibits a peak. Figures 21 and 22 show
considerable variations among the several “‘steep-divergent-
waves” lines that are represented in these figures.
Nevertheless, these lines may be seen to correspond to
values of Y/(~X) equal to about 10~ to 2.10~2, For
ship speeds varying between 10 knots and 25 knots, the
wavelength of the divergent waves corresponding to the
foregoing values of Y/(-X) may be shown to vary
between 0.7 cm and 4.2 cm for Y/(~X) = 10°2, and
2.7 cm and 17 cm for Y/(~X) = 2.1072 These
wavelengths are consistent with the wavelengths of the
radar pulses used in SAR imaging, so that the foregoing
results may provide a partial hydrodynamic explanation
for the narrow V-wakes observed in these images.

The tentative nature of this explanation must
however be stressed. Indeed, the foregoing results are
based on an analysis in which sucface tension and
nonlincarities have been neglected. Inasmuch as this linear
no-surface-tension analysis predicts extremely short and
steep waves in thevicinity of the track of the ship, it is
evident that both surface tension and nonlinear effects are
liable to be significant. In particular, the short
wavelengths found along the steep-divergent-wave lines
determined in this study, and the brief description of the
effects of surface tension upon the Kelvin wake given in
Sharma [8), Lamb [9, pp. 468-470) and Wehausen and
Laitone [10, pp. 636-637] indicate that the system of
divergent waves in the vicinity of the track of the ship is
likely to be profoundly affected by surface tension,
Effects of surface tension upon the Kelvin wake will be
investigated in a sequel to the present study.

APPROACH

This study considers the steady potential flow due
to a ship advancing with constant speed in calm water of
infinite depth and lateral extent. The far-field Kelvin
wake, which is of primary interest here, may be
conveniently analyzed in terms of the nondimensional far-
field coordinates ¥ = Xg/U?, velocity potential ¢ = dg/U3
and velocity vector V, ¢ = V®/U, where g is the
gravitational acceleration and U is the speed of advance of
the ship, X and ¢ represent the dimensional coordinates
and velocity potential, respectively, and v, and ¥y are the
nondimensional and dimensional differential operators
v, = (8/3x,0/2y,8/32) and vy = (3/2X,3/3Y,3/32).
The mean free surface is taken as the plane z = 0, with




the z axis pointing upwards, and the x axis is chosen in
the ship centerplane and pointing towards the bow. The
origin of the system of coordinates is placed within the
ship. The Froude number is denoted by F = U/(gL)!/2,
where L is the length.of the ship.

Equation (32) in [7} yields the following exi)resgioh:
for the velocity potential associated with the Kelvin wake
behind the ship

n$() = Im /0 “IE LX) +E_(tXIKQ) dt, 1))

where E :(t;x_') is the exponential function
E () = expla(l +)+ixzy)(1 +)\3), @
and K(t) is ihc far-field wave-amplitude function, which
depend§ on’the hull shape and the Froude number.
Assuming that differentiation under the integral sign is
permitted in equation (1), we may obtain
| ./oo E,+E_ (1+)12 (3a)
= im i
0 |B,~E_ 11 +1)1/2 (3b)
The nondimensional elevation ¢ = Eg/U? of the
free surface at a sufficiently-large distance behind the ship,

t,

*)-

n

K@)

such that nonlinearities may be neglected, is given by
e(x.y) = 3¢(x,y,0)/dx. @
The slopes of the free surface in the directions parallel-
and perpendicular to the ship course then are
de(x,y)/ax = 3%(x.y,00/3x? (4a)
de(x,y)/ 3y = 3%4(x,y.0//9xdy. (db)
If differentiation under the integral sign in equation.(3a) is
permitted, we have

E,+E_

*\\ ! l /m

= -Im
+\), 0 [E,~E_
The vertical velocity ¢, is given by

ét = _*x\‘ ©)

In this study, we are mostly interested in the value

1+
1(1+t3)

(5a)
(5b)

n

K(t)

of the several flow variables defined above at the mean
free surface and behind the ship, so that we have z = 0
and x < 0. Expression (2) for the exponential function E
then becomes

E, = explix(1¥at)(1 +13)V2, M
where a is defined as
a = ~y/x. (8)

For a ship with port- and starboard-symmetry, as is
considered here, the Kelvin wake is symmetric about the
ship track y = 0. We may then restrict the analysis of the
Kelvin wake to the domain y > 0 and x <0, and assume
az0.

Two difficulties associated with the foregoing
approach for numerically determining the potential, its

gradient, and the free-surface slopes in the Kelvin wake
are readily apparent and should be noted here. A first
numerical difficulty. stems from the oscillations of the
exponential function.E,, given by equation (7), which arc
very rapid for large values of |x]. We have x = )(\g/U2

= (X/L)/F2 For a typical value of the Froude number

equal to 0.2, say, we thus have x = 25 X/L; we then
have x = —250 at 10 ship Tengths behind the ship, and
much larger values of |x| must be considered at greater
distances behind the ship or/and for smaller values of the
Froude number. Even for the coniparatively-moderaté
value of x equal to —50, figure 1 shows that the
functions E_ and E _ oscillate quite rapidly. More

precisely, figure 1 depicts the real parts of the functions
E, (tix,a) and E_(tix,a) for x = ~50; a = .1, .2,
1/, 4and S;and for 0< t < 7and 0 <t < 3 on
the left and right sides, respectively. Figure 1 also
indicates that the behavior of the function E LX)
strongly depends on the:value of a.

Il

(x=-50)

a=35

I

«x2 «ax=12/T a=A

« =1

Fig. | — Real Parts of the Functions E . (t;x,a) and
E_(t;x,a) forx = ~S0and a = .1,.2, 1/232, 4 and .5

A second, more basic, difficulty is associated with
the differentiation under the integral sign which was used
for obtaining expressions (3a,b) and (5a,b) from
expression (1). For a fully-submerged body, the far-field
wave-amplitude function K(t) is exponentially-small as t =
®, so that the operation of differentiating under the
integral sign in expression (1) can be continued ir-efinitely
in principle. Differentiation under the integral sign ikewise
is justified if z < 0. However, the operation must be
justified in the limiting case z = 0 for a surface ship.
Clearly, the operation may not be justified in principle, or
feasible in practice, if the far-field wave-amplitude




function K(t) does not vanish sufficiently rapidly as t -
o, Precise information about the asymptotic behavior of
the function K(t) as t = = is required in this respect.
Figure 2 depicts the real and imaginary parts of the
functions (1 +t3)K(t) and (1 +t)K(t) appearing in the
integrands of the integrals (Sa) and (5b), respertively, for
0% t€ 16 and for a simple ship-bow shape which is
considered further on in this study. Differentiation under
the integral sign in expression (3a) is clearly not justified
in the case corresponding to figure 2.
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Fig. 2 ~— Real and Imaginary Parts of the Functions
(1+t)K(t) and t(1+t)K(t) for a Simple Ship Bow Shape
in the Zeroth-Order Slender-Ship Approximation

ASYMPTOTIC EVALUATION OF THE
KELVIN WAKE

For large values of [x| and z = 0, analytical
approximations to the integrals (1), (3a,b) and (5a,b) can
be obtained by taking advantage of the rapid oscillations
of the exponential functions E,, defined by equation (7).
These functions may be expressed in the form

= ;xp[ixe(t;a)], ®
where 8(t;a) is defined as
8(t;e) = (1 ~at)}1+t)V2, (10)

The functions E _ (;x,a) and E_(t;x,a), where « > 0,
correspond to the function E(t;x,a) with « > 0 and a <0,
respectively. In the limiting case @ = 0, we have E, =
explix(1 +t)V2} = E_. The derivatives of the phase-
function 6(1;x,a) with respect to t are given by

8'(t;a) = ~(@—~t+2atd)/(1 41312, (1)
8" (t;0) = (1-3at—2at3)/(1 4332, (11b)
0" (t;a) = =3(a+0/(1+19%2, (1c)

The phase 8(t;a) and its first and second derivatives

8’(t;0) and 6" (t;a) are depicted in figures 3a, b, ¢,
respectively.
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Fig. 3a — The Phase Function 8(t;a) for 0 € t € 6 and
Several Values of o

Fig. 3b — The Function 8'(t;a) for 0 < t € 6 and
Several Values of «

au=-4
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Fig. 3¢ — The Function 8" (t;a) for 0 € t € 3 and
Several Values of a




It may be seen from figure 3b that the first
derivative 6’ does not vanish except if 0 € o € 1/2%/2,
for which 8’ vanishe. for 2 values of t. Equation (11a)
shows that the 2 points wlvié 8'==0, that is where the
phase 8 is stationary, are given by
t, (@) = (1£(1-80)"/da. 12
Wehave 0€t_ <t, <o, witht_= Oand t, = o for
a=0andt_=12"2 =1t fora=1/2"2 The2
points of stationary phase t _ and t, are apparent on the
left side of figure 1 for @ = .1, .2 and 1/2%/2, Figure 3¢
shows that the second derivative 8"’ vanishes for one
value of t, say t,, if @ 3 0. Equation (11b) yields

o) = (F=1/N/2V2; (13)
where I is defined.as
r = {{1+(1+2a9"2)721/2q}13 (13a)

The value t,, for which 8”= 0, and for which 8’ reaches
its maximum as figure 3b indicates, is a decreasing
function of a. We have ty = o for a = 0, tg = 1/2!/2
for o = 1/2%2, and t = 0 for @ = . Furthermore,
figure 4, where the functions ty(a), t_(a) and t (a) are
depicted, shows that we have 0 € t_ €ty < t, € o for
0<a<1/23?

4

Fig. 4 — The Functions to@), t (e} and t_(a)

In the vicinity of the points of stationary phase ty
the first derivative of the phase-function may be
approximated by the two-term Taylor series
0'(la) v (t=1,)0% + (1~1,)%0%/2, (14)
where the function t, (a) is defined by equation (12), and
O;and 6;’ represent the values of the functions 6”(t;a)
and 8”'(t;a) for t = t . (a). By using equation (12) in
equations (11b) and (11¢) we may obtain
0, = 22¥2(1-82%"%/[1 +4a? £ (1~8aH)Y112,  (153)
0y =2-21/296a%/[1 +4a? £ (1~ 8aY)/2P/2, (15b)

In the neighborhood of the point t;, where 8= 0, we
have

0'(a) v 8 + (t—t, )8 /2, (16)
where the function ty(a) is defined by equation (13), and
€ and 6" represent the values of the functions '(t;a)
and 8" (t;a) defined by equations (11a) and (11c) for t =
to(a). The functions tya), t , (2) and t_(c), 8(a) and
64" (a), ©%(e) and ©%(a), © (a) and ©"'(a) are depicted
in figure 5. The signs of the functions 8y, 65", 87, and
©3 are readily apparent from this figure. The Taylor-
series approximation (14) and (16) are useful for devising
aii.efficient numerical method for evaluating the integrals
(1), (3a,b) and (5a,b), as will be examined in detail
clsewhere.
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Fig. § — The Functions ty(a), t. (a), ©f(a), 04 (a),
©"(a) and ©'(a) for 0 < @ € 0.5

Asymptotic approximations valid for z = 0 and x
—» —oo will now be obtained for the integrals (1), (3a,b)
and (5a,b). These five integrals may be expressed in the
form
n(xia) = Imef wf +cr ), an
where 0 € k € 4, ¢f are constants, and w are the




" integrals defined as

via) = o7 el Koy & a8
in this expression, the phase 8 (t;0) is defined by
0. (te) = (1Fatl1+) 2 witha > G; 19

finally, the constants ¢ in equation (17) and the
functions a,(t; in ecuation (18) are defined i the
following table:

ko & % 5 o«

0 ¢ 1 1 1 (20m)
14 @+ i (20b)
2 4 i o (20c)
I TS S B (20d)
4 4 ) -1 (20¢)

In the particular case o = 0, that is on the track of
the ship, equation (18) yields w;} = y, = ', with
w0 = [ explist + 13 K ct.

The major contribution to this integral in the limit x ~
- stems from the point of stationary phase at the vrigin
t=0. Specifically, we may obtain

/2 (-x)24, (x,0) ~

Im ¢,K; expli(x—n/4)] as x = ~oo, @1
with ¢y = 1, ¢ = ey ==1, (21a,b,c)
and ¢; = 0 = c,; we thus have

$ =0=¢ fora=0, (22a,5)
in accordance with the symmetry of the wave pattern
about the axis @ = 0. In equation (21), K,, represents the
value of the function K(t) at the origin t = 0, that is we
have K, = K(0).

For 0 < a < 1/2%2, the phase 8 _ (t;a) is stationary,
that is 8, = 0, at the two distinct points t_(a) and t_ (a)
defined by equation (12), whereas 8’ (t;a) > 0 for t 3 0,
as may be seen from figure 3b. Equations (17) and (18)
then yield
nh(x,@) ~ Im cf yt as x -~ with 0 < @ < 17232,

The contribution of the two points of stationary phase t,,
can be evaluated by using the method of stationary phase,
with the result

(/)= (x,a) ~ Im o (AT E_ +AJE,)

as x ~ —, with 0 < a < 1/2%2 and 3
= Le=i=cye=~1=c¢y (23a,b,c,d,¢)
furthermore, Ak* and E_ are the amplitude and
exponential functions defined as

A} =K at/(z07)!2, (24a)
E, = expli(x0, £n/d)), (24b)
where K, aF, 8, and @’ are defined as

K, = K(,), af = a,¢,) (25a,b)

#

4

Ot = «l t;‘)’ 0; = 0'(! t.;.)' (zsc'd)
mdtt is the function of a given by equation (12), that is
we have

t, = 1x(1~84)"Y/4a. (260)
We may then obtain
14,2 = [1+4a?£(1-80%)"2)/80a2 (26b)

The expressions for the terms aF mayradilybeol;tained )
from equations (20a-¢), (25b) and (26a,b). Equations (25c),
(19) and (26a,b) yield

8, = BF(-8H (1 +4+2£(1=8a%)21/2/21 280, (260)
Finally, ©’, is given by equation (15a), that is we have
:;e; = .23/20(1 _“2)1/2/" +4¢2:|:(l _saZ)l/le/Z. (26d)

It may be shown from equations (26a,c,d) and
verified from figures 4, 3a, 3c and § that we havet_= 0
and ®_= 1 = O in the limit a == 0, Furthermore,
equations (25b) and (20a-¢) show that we have a;” = 1 fot
k = 0,1and3, and a7 = 0.for k = 2 and 4 in the limit
a = 0. The asymptotic approximation (23) for $,(x,a)
therefore becomes identical to the asymptotic
approximation given by equations (21), (21a,b,c) and
(22a,b) for 4 (x,0) in the limit « = 0, if the contribution
of the second point of stationary phase t, =  is null,
that is if Af = O fora = OQand t_= o, In other words,
the asymptotic approximation (23) for ¢,(x,a) is uniformly
valid in the vicinity of the track of the ship a = 0 if Af =
0 for « = 0, Equations (26a) and (26d) yield t .~ 1/2¢
and ~0% ~ 2a as a = 0. We then have -0 ~ I/t
as a = 0, and the condition for the asymptotic
approximation for ¢,(x,a) to be uniformly valid in the
limit a = O takes the form
V2K ha, (1) = O as t = oo, [PX)}

In the limit @ = 1/23/2, we have © = 1/21/2 =
t, and ©% = 0, as may be verified from equations
(26a,d) and figure 5. Equation (24a) then shows that
have [AE| - o as @ = 1/2%2; and the asymptotic
approximation (23) is not valid in the vicinity of the
boundary of the Kelvin wake. A complementary
asymptotic approximation, expressed in terms of Airy
functions, valid at and near the Kelvin cusp line is given
in Ursell [11] for the particular case of a pressure point at
the free surface. However, we are mostly interesied in the
sector 0 & a < 1/2%2, that is inside the Kelvin wake, in
the present study.

The far-field asymptotic approximation (23) shows
that the wave pattern at any point (x,a), with x € ~1
and 0 € a < 17232, consists in two elementary plane
progress: ve waves. Specifically, 'equations 4), (20b), (23)




and (24b) show that the free-surface elevation within the
Kelvin wake at a sufficiently-large distance behind the ship
is given by
(®/91%-%)\2e(x,0) ~ RelAjexplio )+ A} explie ), 'Q8)
where the phases ¢, of the two waves are ﬁven:by‘
¢, =x0 %n/4. Curves along which the phases ¢, or -
@_ aré constant then are defined by the equation
x© +n/4 = constant. This relation and equation (8) then
yield the following parametric equations for the curves
along which the phase is equal to —2nn:
~x, = QnEn/4)/0,, (299)
¥y = @min/d)ase,, (29b)
where 0 € a < 1/2/2, The ten constant-phase cutves
corresponding to 1 € n € 10 are depicted in figute 6. The
“transverse” and “‘divergent” waves in this classical’
representation of the Kelvin wake correspond to the waves
Al explio ) and A exp(ie ), Tespectively, in equation
(28).

Fig. 6 — The Classical Kelvin Ship Wave Pattern

The wavenumber corresponding to the wave with
phase ¢, is given by V¢, . The corresponding
wavelength, say A, , and direction of propagation with
respect to the track of the ship, say B, then are given by
Ay = 2n/[0e | and B, = tan~YpX/p¥), where @F and
;" tepresent the x- and y-derivatives of ¢, and Ve, |
= ) +f )*1'/2, The relation ¢, = X0, xn/4 and
equation (26¢) then yield
Ay = 2Y216na%/[3 % (1-8a)"2) [1-4a® £ (1-8a%)2)/2,  (306)
B, = sit'{{1-da?£(1-8a2)"2)/[1+ 40?2 (1-8a2)' 3} 1/2 (30b)
Equations (30a,b) show that we have A_= 2n,f_= Q
and A, =0, f, = n/2in the limit @ = 0, and A_ =
an/3 = A, f_= sin~}(1/3VY = p, fora = 1/2%2,
More precisely, we have
2n2)_24n/322,.20 and (31a)
0< g <sin~1(1/3¥2) < g, <n/2, (31b)
as may be seen from figure 7 where the functions
A, (@)/2n and 2B , (a)/n are depicted.
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Fig. 7 — The Wavelengths A, () and Propagation Angles
B . () of the Transverse and Divergent Waves in the
Kelvin Wake:

Equation (28) shows that the amplitudes of the
transverse and divergent waves in the Kelvin wake are
asymptotically given by 2/m)2AF|/(~x)"2 as x + ~o»,
The steepnesses, say s, , of these waves then are given by
s.= @M2AE/(-x)V4, + Equations (244), (25a,b)
and-(20b) then yield
(0%, ~ o (@)K(t,)| as x = —=, (32)
where o, (o) is defined as (2/mV/ %1+ )2/(F05) A .

Equations (26b,d) and (30a) then yield
0y = p=Q _802)112]“ _4021.(1 '-8412)”2]”2

I +4a2t_(l _8a2)|12]3/4/

“"(zlxzn)lfzai/z(l ~8a3)\/4, (33)

Equations (12) and (33) yield t_= Oand o_ =
1/n(2m)!2 inthe limit @ = 0, for which we have A_= 2n
and f_= 0 as was noted previously. The steepness of the
transverse wave at a point (x,0) on the track of the ship
then is given by
s_(x,0) ~ [KO)/n@n)"/%(~x)"/2 as x = =00, (34)

Equations (12) and (33) also yicld t, ~ 1/20 and
0~ 1/16x*2a”2 in the limit @ = 0, for which we have
A,= 0 and B, - n/2. We thus have o~ t"/2/n(m)!/2 as
a -+ 0, and equation (33) shows that the steepness of the
divergent wave at a point (x,a) in the vicinity of the track
of the ship is given by
s, 06@) ~ VK I@0Y-x)!2
asa = 0, with t | ~ 1/2a. (35)

The steepness s (x,a) then becomes unbounded as
a—0if
t72[K(@t)| == > as t = oo, (36)




Equations (4), (20b) and (27) show that the asyniptotic
expansion (23) for the free-surface elevation is valid in the
vicinity of the track of the ship if

/K@) ~ 0ast ~ o, (k7))
Let us assume that we have

[K@®)] ~1/t# as t ~ oo, (38)
Both conditions (37) and (36) are then satisfied if
3/2<u< /2. 39)

Condition (37) means that the amplitudes of the
divergent waves in the Kelvin wake vanish as a ~* 0, that
is as the track of the ship is approached, whereas
condition (36) means that the waves become infinitely
steep; this is’ theoretically possible because the wavelengths
of the divergent waves vanish as a -0, as is indicated in
equation (31a) and figure 7. However, infinitely-steep
water waves cannot exist in reality; indeed, there exists a
theoretical upper bound for the steepness-of water waves
in deep water which is approximately equat to-1/7.
Condition (39) therefore suggests that no, divergent waves
can exist within a certain domain in the vicinity of the
track of the ship, and that the Kelvin wake contains three
distinct regions: (i) an inner region adjacent to the track
of the ship where only transverse waves can exist as.was
just noted, (i) an outer region where both transverse and
divergent waves are present, and (iii) a region at the
boundary between the inner and outer regions where short
steep divergent waves, as well as transverse waves, can be
found. It must be kept in mind, however, that these
conclusions regarding the Kelvin wake are based on
condition (39), which was obtained on thé basis of an
analysis in which surface-tension and nonlinearities are
ignored. Inasmuch as this lincar no-surface-tension
analysis predicts short steep waves, both surface-tension
and nonlinear effects are liable to be significant, and these
effects should therefore be included in a more realistic
analysis. In particular, it is evident from Lamb [9,
pp. 468-470} and Wehausen and Laitone [10, pp. 636-637)
that the system of divergent waves in the immediate
vicinity of the track of the ship may be profoundly
affected by surface tension.

] ¥y = 2(1-x)tan g+ a8 y)

y=4

- d=0.1

Fig. 8 — Waterlines and Framelines of the Simple Ship
Bow Form Considered for Numerical Applications

A SIMPLE-TEST CASE:
THE FAR-FIELD WAVE-AMPLITUDE FUNCTION
The foregoing theoretical resuits are investigated

numerically -for the simple semi-infinite ship form: studied
previously by Scragg [5). This ship form consists of a bow
region, with length L, followed by a parallel body, with
invariant framelines, extending to infinity downstream. All
framelines, both in th2 bow region and downstream from
it, are trapezoidal in shape with constant draft D. The
waterlines are rectilinear. More precisely, the hull form is

defined by the equations
y = x(tanfi+z tany)(1 ~-x)
for0<x<land 02>z 2> —d, (40a)

y = x(tanf+ztany) for x € 0and 0 2z > ~d, (40b)
where x,y,7.and d are nondimensional in terms of the
length of the bow region, that is we have X=X/L and
d=D/L. Equations (40a,b) require that the condition

tanf > d tany @
be satisfied. Equation (40a) shows that the entrance angle
at the bow (x = 1, z = 0) is vqual to 24, and it may be
seen from equations (40a,b) that y represents the flare
angle for x € 0. The four waierlines corresponding to

z = 0, —d/3, —2d/3, —d and the five framelines
corresponding to x = 1, 0.75, 0.5, 0.25, 0 are depicted in
figure 8 ford = (.1, p = I2° and y = 45°. The
notation




Bo = 1anf, yy = tany .. {4a,b)
will be used for shortness hereafter. .

The far-field wave-amy litude function K(t) for ll:e
foregoing semi-infinite hull has been evaluated for tao
simple approximations defined explicitly in terms of the .
hull shape and the Froude number, namely the Michell
thin-ship approaimation and the zeroth-order slcnder-sbié,
approximation {7}, for which the function K(t) is dcnol'ca‘
Ky () and K(1), respectively. The Michell thin-ship
approximation is given by the product of two single
integrals, as follows:

1
Ky = 2° /0 exp[—iv’(1 +19)2] dx

/_ dO expl?(1 +13)z2] By+yg2) dz.

These integrals can be evaluated analytically, with t;{c .
result
Ky = 418y- (By—yodle — Fryell —e)/(1 +1%))

sinfv?(1 +19)1/2/2) expl - iv?(1+1H)V2/2)/(1 +3¥2,  (43)
where the term ¢ is defined as

¢ = exp[-vid(1+13). (@4)
Equations (43) and (44) yield
[Kpy@] ~ 4B,lsin(-2/2)}/03 as t - oo, (45)

The zeroth-order slender-ship approximation may be
expressed in the form ' .
Ko = Kg +Kq @), (46)
where K (1) is given by the sum of a double integral over
the hull surface and a single integral along the top
waterline, as follows:

K¢ = /0' dx [ d° dz explv(1 +13)2)
expl = w31+ 2(x £ y))(Bp +140)
,Vz/ol dx exp| ~ iv2(1 +13)V2(x £ y1)]
B/ 11+ i3+ v = 7). 4

The integration in these integrals is carried over the
positive half of the hull surface. Equations (40a) and
{42a,b) then yield y = (By+y,2)(1 = x). We then have
xtyt = 1-(l iﬁot)(l =X) 2yl ~x)z.

By using this relation into equation (47) we may then

obtain

oliv2] + V2K ? () = 2/‘ w21 + 121

explivi(l +1°) “IKg (1) = v 0 expliv(l +1)"4(1 /yx)
Bolg ~voli - B3/ +B3+rix) dx, (8)

where 12, with n_= 0 and 1, are the integrals defined as

(-1IF =42 [ d° explv2(1 +2X1 Fiygux)z]2” dz,
with u defined as .
u = U(1+)V2 49)
" The integrals I¥ may be evaluated analytically with
the result .
1§ = (—ce )1+ Fiyqux),
I# = [F(1~cc /(1 + 31 Firgux)—dee,)
/(1 £ 2X1 Fiygux),
Where ¢ is the exponential function given by equation (44)
and ¢ is the exponential function defined as
e, = explxivdygt(1+3)'%). (50)
VC'-c then have
Bold ~Yoli" =B/ (1 + B3+ 15x%) =
A —ce B /(1+31Fiygux), (1))
where the terms A, an_d B, are given by
A, = Bo/(1+ M1 Fiygux) - B3/ (1 + 3+ r3x)
= yoF/(1 + (1 F iygux)?,
B, = fy—vgd—roF¥/(1 +13)1 Fiygux).
It may be verified that we have
A, = Bol(1= B33/ +1))+ 3Ryl (1 4+ PR+ +BY)
+1C.s (52a)
B, /(1+ M1 Fiygux) = Bo/(14+19)-y,D,, (52v)
where the terms C + and D 4 are given by
C. = [Brd/0+30 + B3+ 30 = XD/ + B3+
= Borgt?x3 + FX(1 + 2 = y22x2)/(1 + 2 43X
Fit(L+19)173{p, - 2Py /(1 + 2 + Y3 x)}x]
71+ (1 + 2+ 733, (53a)
1+ +2+73233D, = fortx +d(1+1)
+ P21+ 2 -y 233/ (1 + 12 473
F it(1+ 192 (B ygd - 2P/ (1 + 24+ yi 5D, (53b)
Equation (50) yiclds
explivi(1 + V1% fxje, =
explivi(1 + )21 0], (55)
where f3; is defined as
By = By—dy, = tanf—diany, (56)
as may be obtained from cquations (42a,b). By using
cquations (55), (51), (52a,b) and (44) into cquation (48) we
may obtain
explivi(1 + 1)K F () =
Bol(1 = BAA + 1)~ G (i) + Bird(1 + A3+ yD ~ N1 (g
= (1 +fdrexp{ - vid(1 + D)1+~ E GBI + )
+rold , B, C ) +exp{ -V + D} L (GBe.D L)), (ST
where the functions 1¥ (t;8) and J , (t;3,A), or more
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preciscly 15 (:85) and J, (i:5.A.v), are defimed in terms of
the integrals

6p = 2! epia sV Tam o, ot

I (BA) = vZ/o' expliA(1 +12)2(1 3 Mx)A(x) dx. ($65)

The integrals 13 (1;6) can be evaluated amalytically,
with the result
Ig@p) = (1-E Vo, (59)
178 = —il(1+2iFY0,)E, +2F 1 -E V/o% Vo, . (85b)
where o, and E_, are defined as
o, = 1+)V1zp), E, = expw’o,). (5%}
Expressions {59a,b) for I (1:8) and 1" (t;) ace not vakid
in the special case when we have t = 1/8, for which -
exprussions (59a,b) become
Ig(/B:p) = 2, 1} QU/B:ip) = +3/3. (S9e.0)

The integrals 3, defined by equation (S8b), where
the amplitude function A(x} takes the form of C, or D,
specified in equations (53a,b), cannot be evaluated
analytically. These integrals were then evaluated
pumerically by ¢ viding the integration range 0 € x € 1’
into N segments of cqual length and using piccewise
quadratic approximations for the amplitude function A(x)
within each segment. In this manner, we may. obtain, .

0.J,(B.A) gz (tz)"'li(Ai—czA”I)

Kl

in tiee thin-ship limit B, ~ 0, equations (61) and (61a,b)
yield

Kof) ~v 48,01 +13) 73721 — exp{ —12d(1 +1))}).

sinf?(1 +19"2/2] exp{-i2(1 +1)V2/2) as B, ~ 0. (62)
The thin-ship limit (62) of the zeroth-order slender-ship
approximation K (1) may be scen to be identical to the
Michell thin-ship approximation (43) in the particular case
7o = 0. However, the thin-ship limit (62) of the slender-
ship approximation (61) is not uniformly valid in the limit

¢t == ®; indeed, cquations (61) and (61a,b) yield equation

(62) in the limit Syt ~ 0. Equation (62) yields

Kot ~ 4p,lsinA/2)1/63 for 1| K t K 1/, (63)
Moec generally, equation (61) yields
[KoO)] ~ 48R ~ill/(1 + 23 as ¢ — . 69

Equations (61a,b) show that |R -il}

Bt >> 1. We then have

[Ko0)} ~ 2821sin(v?By /(1 + p2n for ¢ > 1/p,. {65)
In the limit t—~c0, cquations (57) and (59a-d) yield

~ ftlsin(wipytdl/2 if

" explivOKE (1) ~ ol - RN (i)
T B+ T R GBIV + B as t = <o,

where we have

Iy ~ ilt - exp{ivi(IF B} 1/(1F Pt as t = o,
By ~ —i explivit(1 T B0}/(1 T f0)t as t — oo,

We lhc}\ have

~ 20,INIZ(1 + B = pA2HeY as t = oo, (66)
where the term N is given by

3]
o

Iy .

i d +(NF/o X, 2—!)(A,,,—A)+(2NF2/0‘) N = (1-p2dlsin(?) +i cos(v?t))

:\, ~ {142, +iONFY/0 Me, — D}A;+A; =24, 1)) (€0) (1 - o2yt sin(3hgtd) +1 coswhgtd, (662)

‘ 4 : Whmf o, I.S vzgwc:be equation (5%), ¢, is defined as o with o2 defined as

O ::d;“A"“ - h . €0 o2 - apdraegierd. (66b)
& s« 10 Ay 12 TEpresent the values of the We may then obtain

, ﬁ amp}n;udc l;iu'tcuon A(x) at :;1: ;:lms X = (jl ?;N X1 'lKo(l)l ~ 4.’30|Sin( vt /I + ﬁ(zw for

1 60 (o 3 (b b G- L2, respoctivly. BXpression 4 ¢ v << Frqpy”, (672

e + (. AY is not valid in the speciat case when ¢ Kol ~ 28lsinBot) /(1 + B3+ Y2 for € 3> 1/8,,. (6Tb)

= /B, for which w,: have Equations (67a,b) are identical to equations (63) and (65)

4 v’
)'.. L‘v

6NJ , (1/:8,A) ﬁ'.zl AFAL +HA L (60b) in the limits B, = 0 and y, = 0, respectively. More
J =

generally, cquation (66a) yiclds the following upper bound
In summary, the zeroth-order slender-ship for the term [N] m cquation (66)
INE € (1=pRD2+ 0+ gD - o3’
+ 201+ P21+ 0PI - Pt 0Bl (68)
Equations (67a,b) thus show that i the himt t =
we have [Kq(0) ~ 1708 for | < t < F/()" 2, that w for

moderately large values of (, and fhg(1) ~ 14° for 1.8,

approximation K(t) is determined by equations (46}, (57),
(59a-f), (60), (60a,b), (42a,b) and (56). In the limiting case
¥o = 0. these equations yicld
Kol = 4f(1 4+~ 320 - 221 + )~

- exp{ - v2d(1 + )R - i/ - ), ()
where the terms R and 1 are given by & t, that is for very large velues of t The asymptotic

R = sipphl +32)112/2} Qilvzuﬂz)l/z‘;l % .f':-v" .‘( Wlons {b7a,b) and (45) show that the Michell

=Pt sinl\r’ﬂo!(! +d)}dy W! +4p /3 2 lﬂh}' M.' Appyonimation Ky, (t) corresponds to the thin-ship hmit 8,

2 / / .
= sinf 1 + Vi) - 5"'21*"'0“’“2)‘ 2. @) « 1 of the zeroth-order slender-ship approximation Kolt),

10
Copy‘ available to DTIC does not
permit fully legible reproducton
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Fig. 9a — Real and Imaginary Parts of the Functions
Kj4(t) and K(t) for a Simple Ship Bow Form with
f = 12° (Top) and 3° (Bottom), y = 0 and F = 0.5

and that this thin-ship limit is not uniformly valid in the
hmut t — oo, More generally, the limiting processes fi, ~ 0
and t = % cannot be interchanged.

Figures 9a,b depict the real and/or imaginary parts
of the functions (1+13)! 2K,(t) and (1+3)!/2Ky(t) for the
simple bow shape defined by equations (40a,b), where the
nondimenstonal draft d and the maximum flare angle y
are tahen equal to d = 0.1 and y = 0, and four values
of the half-entrance-angle f8 are considered, namely =
12°, 3°, 1° and 20'. The Froude number based on the
length of the bow region 1s taken equal to F = 0.5 in the
numencal results presented in figures 9a,b and in figures
10 and 11 considered further on. The values of 1/, =
1/tanf} corresponding to the values of § equal to 12°, 3°,
1° and 20 are approximately equal to 4.7, 19, 57 and
172, respectively. The functions (1 Hz)"ZKM(t) and
( +1y! 2K()(() are depicted for 0 < t £ v n figures 9a,b.
fferences between the approximations KM and Ko,
especia'ly their umaginary parts, can be seen to be
s ibsta 1wl n figure 9a corresponding to f§ = 12° and 3°.
Figure 9b shows that differences between the imaginary
parts of the functions K4 and K, remain appreciable even

JimKyY!+ 2 -
3mKoY1 +12 —
1 1 B= Gl
- L 1
o‘“O 2 4 [ 8 10
t—

Fig. 9b — Real and Imaginary Parts of the Functions
Kpq(t) and K1) for a Simple Ship Bow Form with
f = 1° (Top) and 20’ (Bottom), y = O and F = 0.5

for values of f8 equal to 1° and 20, which are quite
small, and for values of t that are much smaller than
/6,

The top and bottom parts of figure 10 depict the
real and imaginary parts of the functions (1+13)'/2Ky(t)
and (1 +t2)!/2K (1), respectively, for the previously-
considered simple bow shape with d = 0.1, § = 12°, F
= 0.5 and for two valucs of the flare angle, namely for y
= 0 and 45°. The top part of the figure shows that
differences between the curves corresponding toy = 0
and y = 45° are faily small, and are appreciable only for
small values of t, for the Michell thin-ship approximation
Ky In particular, the asymptotic approximation
Kpg(t) ~ 4f, sin(v2t/2) exp( - ivit/2)/t> as t = o,
which may be obtained from equations (43) and (44), is
independent of y. The bottom part of figure 10 shows
differences between the curves corresponding toy = 0
and y = 45° for the slender-ship approximation Ky that
are significantly larger than those for the Michell
approximation Ky, especially for intermediate values of t
in the vicimty of t = 1/tanf ~ 4.7. The flare angle y
thus has a pronounced effect upon the behavior of the
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Fig. 11 — Real (Top) and Imaginary (Bottom) Parts of
the Functions Ky(t) and K(t) for a Simple Ship Bow
Form with p = 12°,y = 45°and F = 0.5

A SIMPLE TEST CASE:
THE FAR-FIELD KELVIN WAKE
The expressions for the far-field wave-amplitude
function K(t) obtained in the foregoing section for a

- ] | 1 1
O.No

simple bow shape and for two simple approximations to
the function K(t), namely the Michell thin-ship

2 4 L] 8 10

Fig. 10 — Real and Imaginary Parts of the Functions
Ka(1) and K(t) for a Simple Ship Bow Form with
y = 0and 45°, 8 = 12°and F = 0.5

approximation Ky, and the zeroth-order slender-ship
approximation K, may now be used into the previously
determined asymptotic approximations for the far-field

slender-ship approximation K(t) for values of t in the Kelvin wake.

neighborhood of 1/tanf. The influence of y upon |K0(f)|
for large values of t is explicitly indicated by the
asymptotic approximations (67a,b).

Finally, figure 11 depicts the real and imaginary
parts of the functions (1+t3)"2Ky(0) and (1 +)VK ()
for the simple bow shape depicted in figure 8, for which
we have d = 0.1, # = 12° and y = 45°, at a value of
the Froude number F equal to 0.5. Differences between
the approximations K,, and K, may be seen to be quite
substantial. In particular, the function (1 +t%)!/2K(t) has
apeak att = 1/an = 1/,

Far behind the ship, that is for x = ~o, the
functions ¢, (x,a), where 0 < k € 4, defined by equations
(17, (18), (19) and (20a-¢) are given by the asymptotic
approximation (23). The real and imaginary parts of the
amplitude functions A, (e) and Af (@) in this asymptotic
approximation, given by equation (24a), are depicted in
figures 12a and b, 13a and b and 14 for 0 < a < 1/2%2,
More precisely, figures 12a,b and 13a,b represent the
amplitude functions A and A" for k = 0,1,2,3
associated with the potential ¢ and its derivatives é,, +y
and ¢,,, and correspond to the approximations K,, and




K. respectively. Figure 14 depicts the amplitude functions
A; and A} corresponding to #xy for the aporoximations
Ky and Ky
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Fig. 12a — Real (Top) and Imaginary (Bottom) Parts of
the Functions K ,aF/(F©)/2 for k = 0 (Left) and 1
(Right), K = Kjp; (Michell Thin-Ship Approximation) and
a Simple Ship Bow Form with § = 12°, y = 45° and
F=05
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Fig. 12b — Real (Top) and Imaginary (Bottom) Parts of
the Functions K ,ag /($87)12 for k = 2 (Left) and 3
(Right), K = Kpy (Michell Thin-Ship Approximation) and
a Simple Ship Bow Form with § = 12°, y = 45° and
F =05

It may be seen from figures 12a and b, 13a and b
and 14 that the amphtude functions A, (o) and A/ (a)
become unbounded n the limit « - 1/232, This
singulanty at @ = 1/2%2 stems from the fact that the
asymptotic approxymation (23) 1s not uniformly valid in
the limit o = 172%2, as was already noted. The amplitude
functions A’ (@) corresponding to the system of divergent
waves 1n the Keivin wake also become unbounded in the
limit a -* 0 1n figures 13b and 14 corresponding to k = 2
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Fig. 13a — Real (Top) and Imaginary (Bottom) Parts of
the Functions K ag /(F04)2 for k = 0 (Left) and 1
(Right), K = K (Zeroth-Order Slender-Ship
Approximation) and a Simple Ship Bow Form with
p=12°y=45andF = 0.5

p=12, ywdl', F=uS
0.28 =3
+
+
t oo o\
A ﬂ
=e Re <ép>
[ J
4
= +
-] m <ép> .
¥ Na_
# \4
e -
wonp / (2+an’p) wnp / (2+mnp)
- 030 i i 1 i 1 :
0 0.1 0.2 03 3030 O 0.2 03 /%

o« = At
Fig. 13b — Real (Top) and Imaginary (Bottom) Parts of
the Functions K ,ag /(F0%)172 for k = 2 (Left) and 3
(Right), K = K (Zeroth-Order Slender-Ship
Approximation) and a Simple Ship Bow Form with
p=12°y=45and F = 0.5

and 3 for the slender-ship approximation K, and to k = 4
for both approximations K4 and Ky, respectively This
singulanty at a = 0 illustrates the previously-noted
conclusion that the asymptotic approximation (23) is not
uniformly valid in the vicinity of the track of the ship «
= 0 if condition (27) 1s not satisfied. Equations (20a-c)
show that we have ag ~ I, a; ~ t, a, ~ 1%, a; ~ t? and
a, ™ 13 as t = 0, and equations (45) and (67b) yield
[Kpgl ~ 1703 and [Kg| ~ 1/t2 as t = oo, respectively.
Condition (27) therefore is not satisfied for k > 4 and k
2 2 for the approximations K, and K, respectively
Condition (27) however is satisfied for k = 0 and 1,
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.}‘ corresponding to the potential ¢ and the free-surface
K \ clevation ¢,, for both the approximations Ky, and K.

03 PuiZ, y= 4B, Fu0f
K VAR
Figures 12a and 13a show that the amplitude

functions Ag” and Ay, corresponding to the transverse —_/

waves in the Kelvin wake, generally are larger in =
magnitude than the amplitude functions AJ" and A}
corresponding to the divergent waves, whereas the reverse
may generally be seen to hold in figures 12b and 13b for
the amplitude functions Af and A. The relative
importance of the divergent waves with respect to the
transverse waves thus increases with k. Indeed, the
transverse-wave amplitude function A; (a) is hardly visible
on the scale of the divergent-wave-amplitude function

A (a) used in figure 14,
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Fig. 15 — Amplitude of the Transverse (—) and
Divergent (+4) Waves in the Kelvin Wake for a Simple
Ship Bow Form, with § = 12°,y = 45°and F = 0.5, in
the Michell Thin-Ship Approximation (Left) and the
Zeroth-Order Slender-Ship Approximati .; (Right)
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indicated in equation (28), for the previously-considered
ship bow shape. It may be seen that the amplitude a  (a)
of the divergent waves in the Kelvin wake vanishes as a =~
0, that is at the track of the ship, and is generally smaller
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than the amplitude a_(a) of the transverse waves; this is
especially true in the vicinity of the track of the ship.
Differences between the wave-amplitude functions a +(@)

corresponding to the approximations K,,(t) and X(t) are
particularly striking for the amplitude a_ (o) of the
divergent waves in the vicinity of o = tanf/(2+tan?p),
where the function a  (a) associated with the
approximation K(t) exhibits a sharp peak.

Figure 16 depicts the wave-steepness functions s_(a)

03 a0 O 03
[ S @ —
Fig. 14 — Real (Top) and Imaginary (Bottom) Parts of
the Functions K a#/( 64)1/2 for Ky (Left) and Ko
(Right) and a Simple Ship Bow Form with § = 12°,
y=45°and F = 0.5

The divergent-wave-amplitude functions A,'(" (a)
associated with the approximation K are most notably
different from the corresponding functions A (e)
associated with the Michell approximation Ky, for values
of a in the vicinity of @ = 0, as was already noted, and
of @ = tanf/(2+tan?p). In the vicinity of this value of a,
the divergent-wave-amplitude functions A (a) associated
with the approximation K exhibit a peak, which is quite
pronounced for k > 1. The foregoing particular value of
a corresponds to the special case when the point of
stationary phase t, defined by equation (12), is equal to
the value 1/8, = 1/tanf} for which the function K1)
displays a peak, as may be seen from figures 10 and 11.

Figure 15 depicts the amplitude functions
(2/m)!/2A[ and (2/m)Y/2A} that are associated with the
free-surface elevation far behind the ship, as is specifically

and s _ (), which correspond to the ratios of the wave-
amplitude functions a_(a) and a (o) depicted in figure 15
over the wavelength functions 2 _(a) and A, (a) defined by
equation (30a); the steepness functions s, (a) are
specifically defined by equations (32) and (33). The
divergent waves in the Kelvin wake may be seen to be
generally steeper than the transverse waves, even though
figure 15 shows the transverse waves to be larger in
amplitude than the divergent waves. This is especially true
near the track of the ship where the steepness of the
divergent waves becomes infinitely large, even though
figure 15 shows that their amplitude vanishes as a = 0.
The divergent waves become infinitely steep at the track
of the ship because the wavelength A (a) =~ O asa =~ 0
and condition (36) is satisfied, for both the
approximations K,(t) and K(t) as may be seen from
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Fig. 16 — Steepness of the Transverse (—) and Divergent
(+) Waves in the Kelvin Wake for a Simple Ship Bow
Form, with § = 12°,y = 45°and F = 0.5, in the
Michell Thin-Ship Approximation (Left) and the Zeroth-

Order Slender-Ship Approximation (Right)
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Fig. 17 — Upper Bound for the Stecpness of the
Divergent Waves in the Kelvin Wake for a Simple Ship
Bow Form, with § = 12° and y = 45°, in the Michell
Thir hip Approximation (Left) and the Zeroth-Order

Slender-Ship Approximation (Right)
equations (45) and (67b). Figure 16 also shows a sharp
peak in the steepness of the divergent waves at the value
of a equal to tanp/(2 + tanp).

The steepness s () of the divergent waves is given
by equations (32) and (33). An upper bound for the
functions s, (@) may be obtained by using an upper
bound for the function |K(t, )| in equation (32). Equation
(45) yields the following upper bound for the function
{Kp4(0)} corresponding to the Michell thin-ship
approximation: |Ky () € 4[}0/13 as t = %, An upper
bound for the function {K(t)| is given by equation (66),
where the upper bound defined by equation (68) is used
for the term IN{. These upper bounds for the functions

[Kpy ()] and [Ky()] can be expressed in terins of a by
using equation (12). The corresponding upper bounds for
the steepness function s (o) are depicted in figure 17.
Comparison of figures 16 and 17 shows that the upper
bound for the steepness of the divergent waves in the
Kelvin wake depicted in figure 17 is satisfactory for all
values of a for the Michell approximation Ky, whereas
that corresponding to the slender-ship approximation K is
satisfactory for values of a smaller than approximately
half the value tanf/(2 +tan?f). In both cases, the upper
bounds for the function s (a) depicted in figure 17 are
satisfactory for the range of small values of « for which
the steepness s, (a) is large. It is noteworthy that these
upper bounds for the steepness of the divergent waves are
valid for all Froude numbers, since equations (12), (32)
and (33), and the upper bounds for |Ky,(t)] and [K(®)] do
not involve the Froude number.

Figurc 18 depicts the steepness function s (a) of
the divergent waves corresponding to the slender-ship
approximation K(t) for the simple bow shape considered
previously in the two cases when the maximum flare angle
y is taken equal to 0 and 45° (at the top and bottom
halves of the figure, respectively) and for two values of the
Froude number, namely for F = 0.8 and 0.3 (on the right
and left halves of the figure, respectively). Comparison of
the right and left halves of figure 18 shows no appreciable
difference between the values of the steepness function
$ , (a) for the range of small values of a for which the
steepness is large, in agreement with the previously-noted
result that the upper bound for s (a) depicted on the
right side of figure 17 is independent of the Froude

p=12r

F=03
vy=0

Fu03
v =45

|

1vis 0.2 1”7
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Fig. 18 — Steepness of the Divergent Waves in the Kelvin
Wake for a Simple Ship Bow Form with § = 12°,y = 0
(Top) and 45° (Bottom), and F = 0.3 (Left) and 0.8
(Right) 1n the Zeroth-Order Slender-Ship Approximation

15

g

e

P M T U




%
g1
y=ar
12
a
x ¥
&
$
:
B o
3 =
o ! ! !
[} 0.2 0.4 08 0.9
F

Fig. 19 — Amplitude of the Peak Value of the Steepness
of the Divergent Waves in the Kelvin Wake ‘or a Simple
Ship Bow Form with # = 12° and y = 45° in the
Zeroth-Order Slender-Ship Approximation

number. Comparison of the top and bottom halves of
figure 18, corresponding to y = 0 and 45° as was already
noted, shows appreciable differences, especially for F =
0.3 for which the function s (a) exhibits a very
pronounced peak in the case y = 45°. No such peak is
apparent in the top half of the figure for y = 0, that is
in the case when the hull intersects the free surface
orthogonally.

The right half of figure 16 and the bottom half of
figure 18 show that the magnitude of the peak in the
tanp/(2 +tan?p) strongly
depends on the value of the Froude number. Specifically,

steepness function s (a) for a =

the peak is very pronounced in figure 18 for F = 0.3,
fairly pronounced in figure 16 for F = 0.5, and almost
nonapparent in figure 18 for F = 0.8. The magnitude of
the peak in the steepness function, that is the value of the
function s () for « = tanp/(2+tan2p), is represented in
figure 19 as a function of the Froude number, which is
based on the length of the bow region. This figure shows

16

that the magnitude of the peak increases very rapidly as
the Froude number decreases below a certain threshold
value in the vicinity of F = 0.3.

Figure 20 depicts the boundary of the Kelvin wake,
which corresponds to a = —y/x = 1/2%2 (that is, an
angle equal to approximately 19°28’), the line a =
tanf/(2 +tan?) ~ p/2 (that is, an angle equal to
approximately 6°) along which the steepness of the
divergent waves has a peak, and the lines along which the
steepness of the divergent waves is equal to 1/20, 1/15,
and 1/7 (shown as a chain line close to the track of the
ship). The latter three lines were determined by using the
upper bound for the steepness function s _ (e) that was
determined previously and depicted on the right half of
figure 17. The four lines inside the Kelvin wake shown in
figure 20 correspond to the zeroth-order slender-ship
approximation K(t) for the simple bow shape considered
previously, with = 12°,y = 45° and d = 0.1. The
three lines along which the divergent waves are steep lie
much closer to the track of the ship than the lines a o~ 6°
along which the steepness of the divergent waves exhibits

a peak.

40

=12, y = 45

Fig. 20 — The Kelvin Cusp Line, the Line Along Which

the Amplitude of the Divergent Waves Exhibits a Peak,

and the Three Lines Along Which the Steepness of the

Divergent Waves is Equal to 1/20, 1/15 and 1/7 (Chain

Line Close to the Track of the Ship) for a Simple Ship

Bow Form, with g = 12° and y = 45°, in the Zeroth-
Order Slender-Ship Approximation

The three lines along which the steepness of the
divergent waves is equal to 1720, 1/15 and 1/7, which are
depicted in figure 20 for 0 > x > - 100 and 0 < y < 40,
are represented again in figure 21 at a distorted scale
where 0 > x = —300 and 0 € y € 7. The corresponding
constant-steepness lines predicted by the Michell thin-ship
approximation are also shown in figure 21 for
comparison. The latter lines were determined from
equations (32) and (33) and the upper bound |Kp(t)] €
4p,/t given by equation (45). Figure 21 shows significant
differences between.the constant-steepness lines predicted
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%&é’ 7 the short divergent waves in the Kelvin wake become

i o 0 $=12, y= 48 steeper as the entrance angle § increases and as the flare

:&; v Ko — angle y decreases. More generally, figure 22 shows that the

R Ky -~ short divergent waves in the Kelvin wake are strongly
influenced by the hull shape, and it therefore suggests the

need for performing additional calculations in whioh
systematic variations in hull shape are considered.

SUMMARY OF RESULTS AND CONCLUSIONS

tal
i
,: ‘G Asymptotic expressions for determining the velocity
2.§‘! 0 potential and its derivatives at a sufficiently-large distance
D'Fig. 2 —\;{ Lines Aéonil Which the /511“9055 of ;he behind a ship advancing at constant speed in calm water
.y ivergent Waves is Equal to 1/20, 1/15 and 1/7 for a . .
;,!Q.‘ Simple Ship Bow Form, with f = 12° and y = 45°, in are given by equations (23), (23a-¢), (24a,b), (25a-d), (20a-
fv ] the Michell Thin-Ship Approximation (— — —) and the ¢) and (26a-d). The far-field asymptotic approximation
S0 . H H . vye .
“a? Zeroth-Order Slender-Ship Approximation ( ) (23) is uniformly valid in the vicinity of the track of the
ﬂ{f‘ ship ¢ = 0 if condition (27) is satisfied. For the simple
W e e
:'-\ _ bow shape considered in this study, condition (27) is
%@;ﬁ BN L TS . satisfied for k = 0 and 1, corresponding to the potential
‘::&:& ' = ~. Bz 7_:‘;- - ¢ and the free-surface elevation ¢,, when the far-field
::':g » B '!Nl;;.\\.\“: \\\\ wave-amplitude function K(t) is approximated by the
:: T—— e Michell thin-ship approximation Ky,(t) or the zeroth-order
-\.':.‘5!3! . ‘g - slender-ship approximation K(t). However, condition (27)
R ——~ . Yoo, > is not satisfied for k > 4 and k > 2 for the
L ’ 1 — v- :}. i-),;:« e approximations Ky and K, respectively.
3' A "} . » YN R T The asymptotic approximations used in this study
{ ’3’ ’ ’ ""‘\lf\::‘\% provide simple explicit analytical expressions for
! s ol 0 i L ; N\ determining the velocity potential and its derivatives for
b, -1000 =00 =500 ~%0 =) J ) . .
A . ) large values of —~Xg/U#4, that is in the {ar field, in terms
. | Fig. 22 — Lines Along Which the Steepness of the { the far-ficld litude function. H f
:;! ‘?‘3 Divergent Waves is Equal to i/15 for a Simple Ship Bow of the far-ficld wave-amplitude function. However, for
i‘::‘g s Form with § = 8°, 12°, 16° and y = 45° (Top) and small and intermediate values of Xg/UZ, these asymptotic
i $ y = 0, 25°, 45° and § = 12° (Bottom) in the Zeroth- oximations are not useful, and the integrals (18 1
l:"‘"%' Order Slender-Ship Approximation approximati _n nsetu s nd the integrals (18) mus
'."Q {} .
g:hv “9' be evaluated numerically. For intermediate values of
fo!és'if& by the Michell thin-ship approximation K(t) and the Xg/U?, the exponential function E , (t5X)+E_ (ti%) in the
: integrands of the integrals (1), (3a,b) and (5a,b) oscillates

zeroth-order slender-ship approximation Ky(t). This figure
strongly suggests the need for performing additicnal
calculations based on a more realistic mathematical model
than the simple thin-ship and slender-ship approximations
used in this study.

Finally, the effect of the entrance angle § and of
the flare angle y on the steepness of the divergent waves is
illustrated in figure 22, Specifically, this figure depicts the
lines along which the steepness of the divergent waves, as
predicted by the slender-ship approximation Ky(t), is equal
to 1/15 for = 8°,12°, 16° and y = 45°, in the top
‘ half of the figure, and for y = 0, 25°, 45° and §§ = 12°

in the bottom half of the figure. This figure shows that

fairly rapidly, as may be scen from figure . Accurate and
efficient integration rules suited to oscillatory integrands of
the type depicted in figure 1 must be used. For small
values of Xg/Uz. on the other hand, the oscillations of
the exponential function E +(t;35+E_(t;'x') are not
significantly more rapid than the oscillations of the fai-
field wave-amplitude function K(t) which also appears in
the integrands of the wave integrals (18), so that a
different integration rule is required.

The amplitude, a_, of the divergent waves in the
Kelvin wake vanishes at the track of the ship if condition
(37) is satisfied. However, ut is well known that the

17




SR

i

P“ &

wavelength, A, of the divergent waves also vanishes at
the track of the ship, as may be seen from figures 6 and
7. Therefore, the divergent waves can theoretically become
infinitely steep at the track of the ship. More precisely,
the steepness, s, = a_ /A, of the divergent waves is
unbounded at the track of the ship if condition (36) is
satisfied. Both conditions (37) and (36) can be satisfied
simultaneously if condition (39) is satisfied, where the far-
field wave-amplitude function is of order 1/t* as t —= oo,
Conditions (37) and (36), and consequently also condition
(39), are satisfied in the cases of the thin-ship and the
slender-ship approximations Ky and K, for the simple
ship form considered in the study, as may be verified
from figures 15 dnd 16 where a_ (@) = 0 and s (a) =
asa 0.

Infinitely-steep water waves cannot exist in reality.
Indeed, there exists a theoretical upper bound for the
steepness of water waves in deep water, which is
approximately equal to 1/7. Condition (39) thus suggests
that no divergent waves can exist within a certain region
in the vicinity of the track of the ship, and that the Kelvin
wake contains three distinct regions: (i) an inner region
adjacent to the track of the ship where only transverse
waves can exist, (ii) an outer region where both transverse
and divergent waves are present, and (iii) an intermediate
region at the boundary between the inner and outer
regions where stcep short divergent waves, as well as
transverse waves, can be found.

Surface-tension and nonlincar effects have been
ignored in the analysis presented in this study. This linear
no-surface-tension analysis predicts extremely short and
steep waves in the vicinity of the track of the ship. Both
surface-tension and nonlinear effects therefore are liable to
be significant, and these effects should be taken into
account. A linear analysis including surface-tension effects
should be performed first, since it is evident from the
results obtained in the present study and from the brief
description of the effects of surface tension upon the
Kelvin wake given in Lamb {9, pp. 468-470] and
Wehausen and Laitone {10, pp. 636-637] that the system
of divergent waves in the vicinity of the track of the ship
is likely to be profoundly affected by surface tension.

It was previously found by Scragg [5] that, for a
ship bow form with a large Mare angle, the zeroth-order
slender-ship approximation K(t) predicts a sharp peak in
the value of the amplitude of the divergent waves at a

(-'\ &
"- k’\‘
‘&,*"" }‘gx"n"\. ‘&\"
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value of a equal to approximately half the entrance angle
B. This finding of Scragg has been verified in this study,
as may be seen from figures 15, 16 and 18, Furthermore,
the magnitude of the steepness of the divcréent waves has
been found to increase very rapidly as the Froude number
decreases below a certain threshold value, as is shown in
figure 19.

The line along which the steepness s (a) of the
divergent waves has a peak and the lines along which
s . (a) takes the large values 1/7, 1/15 and 1/20 have been
determined, for a simple ship form, on the basis of both
the zeroth-order slender-ship approximation Ky(t) and the
Michell thin-ship approximation Ky,(t). Figure 20,
corresponding to the slender-ship approximation Ky(t),
shows that these lines are well inside the Kelvin angle, and
that the large-steepness lines are much closer to the track
of the ship than the line corresponding to the peak in the
steepness of the divergent waves.

The lines, depicted in figures 20 and 21, along
which the steepness of the divergent waves takes large
constant values are independent of the value of the
Froude number, but they strongly depend on the hull
shape, as may be scen from figure 22 where ‘“‘constant-
steepness lines” corresponding to several values of the
entrance angle 8 and of the flare angle y are depicted.
This figure shows that the short divergent waves in the
Kelvin wake become steeper as the entrance angle
increases and/or as the flare angle decreases.

It was found that the lines, along which the
steepness of the divergent waves takes large constant
values, predicted by the slender-ship approximation K(t)
and the thin-ship approximation Ky(t) are quite different
from one another, as may be seen from figure 21. This
figure therefore indicates the need for performing
additional calculations based on a more realistic
mathematical model than the simple thin-ship and slender-
ship approximations used in this study. These two
approximations correspond to simple special cases of the
Neumann-Kelvin theory, which should then be used. In
particular, it would be useful to determine whether this
more realistic theory predicts that the steepness of the
divergent waves in the Kelvin wake exhibits a peak (or
several peaks), as was found by using the slender-ship
approximation K1) for a ship bow form with large flare
angle. Figure 21 specifically demonstrates the importance
of obtaining accurate predictions of the far-field wave-

. =

Mo o Ve

PO SR LV T




amplitude function K(t) for large values of t. Indeed, the
short divergent waves in the vicinity of the track of the
ship, that is for small values of a, are associated with ti.c
value of the function K(t) for large values of t, as may be
seen from equations (23), (24a), (25a) and (12). Precise
knowledge of the asymptotic behavior of the function K(t)
as t —~ o therefore is critical.

The behavior of the function K(t) as t — « has
been determined analytically in this study for the simple
case of the thin-ship and slender-ship approximations
Kp(t) and Ky(©) for an idealized ship bow form. More
precisely, the asymptotic behavior of the functions Ky, (1)
and K(t) for the simple ship bow shape considered in this
study is specified by equations (45) and (67a,b). These
asymptotic approximations show that we have |Ky(t)| =
0(1/6%) and [Ky(0)} = 0(1/t%) as t = =, They also show
that the Michell thin-ship approximation Ky(t), which
corresponds to the thin-ship limit of the slender-ship
approximation K(t), is not uniformly valid in the limit t
== o0, It is possible to analytically determine the behavior
of the far-field wave-amplitude function K(t) associated
with the Neumann-Kelvin theory for an arbitrary ship
form, as is shown in [12]. Such an asymptotic
approximation for the function K(t) for large values of t
is uscful because it provides an explicit analytical
relationship between the hull form and the Froude
number, on one hand, and the amplitude of the short
divergent waves in the vicinity of the track of the ship, on
the other hand.

ACKNOWLEDGMENTS
This study was funded by the Office of Naval
Technolcgy sponsored Exploratory Development Surface
Ship Wake Detection Project at the David W. Taylor
Naval Ship R&D Center. The authors wish to thank
Dr. Arthur Reed and Mr. Seth Hawkins for their interest
in the study and for their useful comments,

19

REFERENCES

1. Fu, Lee-Lueng and Benjamin Holt, *‘Seasat
Views Oceans and Sea Ice with Synthetic Aperture
Radar'*, JPL Publication 81-120, 15 Feb 1982.

2. McDonough, Robert N., Barry E. Raff and
Joyce L. Kerr, *‘lmage Formation from Spaceborne
Synthetic Aperture Radar Signals”, Johns Hopkins APL
Technical Digest, Vol. 6, No. 4, Oct-Dec 1985,
pp. 300-312.

3. Swanson, Claude V., ‘“‘Radar Observability of
Ship, Wakes”, Applied Physics Technology Report No. 1,
May 1984, 109 pp.

4. Case, K.M., et al, *‘Seasat Report’’, MITRE
Corporation, Report JSR-83-203, March 1984.

S. Scragg, Carl A., “A Numerical Investigation of
the Kelvin Wake Generated by a Destroyer Hull Form”',
Science Applications, Report No. SAI-83/1216, Oct 1983,
pp. 46.

6. Cooper, A.L., “Interactions Between Ocean
Surface Waves and Currents”, Naval Rescarch
Laboratory, NRL Memorandum Report 5755, April 1986,
pp. 18.

7. Noblesse, F., ““A Slender-Ship Theory of Wave
Resistance”’, Journal of Skip Research, Vol. 27, No. |,
March 1983, pp. 13-33.

8. Sharma, S.D., “Some Results Concerning the
Wavemaking of a Thin Ship”, Journal of Ship Research,
Vol. 13, 1969, pp. 72-81.

9. Lamb, H., “Hydrodynzmics”, Dover
Publications, New York, 1879, pp. 738.

10. Wehausen, J.V. and E.V. Laitone, “‘Surface
Waves”, in Encyclopedia of Physics, Springer-Verlag,
Berlin, Vol. IX, 1960, pp. 446-778.

11. Ursell, F., “On Kelvin’s Ship-Wave Pattern”,
Journal of Fluid Mechanics, Vol. 8, 1960, pp. 418-431.

12. Noblesse, F., *Analytical Approximations for
Steady Ship Waves at Low Froude Numbers™, 21st ATTC
Resistance and Flow Committee, Washington, Aug. 1986.

ki

i

5

A

et

PERTSE R IR

1

R




h
Al
v

G

S

Kok
KT

2 X

JK%

Copies

US Army Waterways
Experiment Station
Research Center Lib

CHONR/Code 432

CONR/Boston
CONR/Chicago
CONR/Pasadena
NAVPGSCOL

NROTC & NAVADMINU
NAVWARCOL

NRL
1 Lib
4 5841

NAVSEA

SEA 003
SEA 07 R
SEA 31B
SEA 55W
SEA 55W3
SEA 55W32
SEA 55W33
SEA 56X1

p—t e DN = b b

NAVFACENGCOM
NAVOCEANO/Lib

NADC

NWC

NOSC

CEL/Code L31
NSWC/White Oak/Lib

NSWC/Dahlgren/Lib

INITIAL DISTRIBUTION
Copies
1

1

21

NUSC NPT
NUSC NLONLAB
NAVSHIPYD BREM/Lib
NAVSHIPYD CHASN/Lib
NAVSHIPYD MARE/Lib
NAVSHIPYD NORVA/Lib
NAVSHIPYD PEARL/Lib
NAVSHIPYD PHILA
DTIC
AFFDL/FDDS/J. Olsen
AFFDL/FYS

1 Dale Cooley

1 S.Je POllOCk
COGARD

1 coM (E), STA 5-2

1 Div of Merchant Marine

Safety

LC/Sci & Tech Div
MARAD/Adv Ship Prog Office
MMA/Tech Lib

NASA AMES RESEARCH CENTER/
R.,T. Medan, Ms 221-2

NASA LANGLEY RESSARCH CENTER
1 J.E. Lemar, Ms 404A
1 Brooks
1 E.C. Yates, Jr., Ms 340
1 D. Bu< nell

NASA/Sci & Tech Info ‘ac. ity

NSF/Eng Div




Copies Copies

1 Univ of Bridgeport 1 Lehigh Univ Fritz Lab Lib
Prof. E. Uram
Mech Eng Dept 1 Long Island Univ
Grad Dept of Marine Sci
5 Univ of California, Berkeley David Price
College of Eng, NA Dept
1 Lib 1 Delaware Univ/Math Dept
1 J.R. Paulling
1 J.V. Wehausen 4 Univ of Maryland
1 W. Webster 1 Eng Lib
1 R. Yeung 1 P
1 C.L. §
3 CA Inst of Tech 1 F. Buckley
1 A.J. Acosta
1 T.Y. Wu 6 MIT/Dept of Ocean Eng
1 Lib 1 J.R. Kerwin
1 J.N. Newman
1 Colorado State Univ 1 P. Leehey
M. Albertson 1 M. Abkowitz
Dept of Civ Eng 1 A.T. Ippen/Hydro Lab
1 T.F. Ogilvie
1 Univ of Conrnecticut
V. Scottron 5 Univ of Michigan/Dept/NAME
Hyd Research Lab 1 Lib
1 R. Beck
1 Cornell Univ 1 R.B. Couch
Grad School of Aero Eng 1 W. Vorus
1 T.E. Brockett
1 Florida Atlantic Univ
Ocean Eng Lib 5 Univ of Minn/St. Anthony Falls
1 R. Arndt
2 Harvard Univ/Dept of Math 1 C. Farell
1 G. Birkhoff 1 J.M. Killen
1 G. Carrier 1 F. Schiebe
1 JM. Wetzel
1 Univ of Hawaii/Dr. Bretschneider
3 City College, Wave Hill
1 Univ of Illinois/Coll of Eng 1 W.J. Pierson, Jr,
J.M. Robertson 1 A.S. Peters
Theoretical & Applied Mech 1 J.J. Stoker
4 State Univ of Iowa 1 Univ of Notre Dame
Iowa Inst of Hyd Research A.F. Strandhagen
1 L. Landweber
1 J. Kennedy 1 Penn State Univ
1 V.C. Patel Applied Research Lab
1 F. Stern
2 SAI/Annapolis
1 Kansas State Univ 1 N. Salvesen
Eng Exp Station/D.A. Nesmith 1 C. von Kerczek

22




Copies

o

Southwest Research Inst
1 H.N. Abramson
1 G.E. Transleben, Jr.
1 Applied Mech Review

Stanford Univ/Dept of Div Eng
1 R.L. Street

1 B. Perry

2 Dept of Aero and Astro/
J. Ashley
M. Van Dyke

Stanford Research Inst/Lib

Stevens Inst of Tech/Davidson Lab
1 D. Savitsky
1 Lib

Utah State Univ/Col of Eng
Roland W. Jeppson

Univ of Virginia/Aero Eng Dept
1 J.K. Haviland

1  Young Yoo
Webb Institute

1 Lib

1 L.W. Ward

Worcester Poly Inst/Alden
Research Lab

Woods Hole, Ocean Eng Dept
SNAME
Aerojet-General /W.C. Beckwith
Bethlehem Steel Sparrows Tech Mgr
Bolt, Beranek & Newman, MA
Boeing Company/Aerospace Group

1 R.R. Barberr

1 W.S. Rowe

1 P.E. Rubbert

1

G.R. Saaris

CALSPAN, Inc. Applied Mech Dept

23

Copies

Flow Research, Inc.
Eastern Research Group

General Dynamics Corp
1 Convair Aerospace Div
A.M. Cunningham, Jr.
Ms 2851
1 Electric Boat Div
V.T. Boatwright, Jr.

Gibbs & Cox, Inc.
Tech Info Control Section

Grumman Aircraft Eng Corp
W.P. Carl, Mgr/Grumman Marine

Tracor Hydronautics, Inc.
1 G. Miller
1 A. Goodman

Lockheed Aircraft Corp
Lockheed Missiles & Space
1 R.L. Waid
1 R. Lecay
1 R. Parkins
1 R. Kramer

Marquadt Corp/F. Lane
General Applied Sci Labs

Martin Marietta Corp/Rias

McDonnell-Douglas Corp/Douglas
Aircraft Company
1 Lib
1 T, Cebeci

Newport News Shipbuilding/Lib
Nielsen, NA Rockwell

North American Rockwell
Los Angeles Div
J«R. Tuliniusg/Dept 056-015

Northrop Corp/Aircraft Div
1 J.T. Gallagher
1 J.R. Stevens

WL W CTRATER 2

TR




Copies Copies Code Name

1 Sperry Sys Mgmt 3 1544
1 Robert Taggart, Inc. 2 156
1 Tracor 1 1561
2 VPI 1 1562
1 J. Schetz
1 P. Kaplan 1 1563
1 1564
CENTER DISTRIBUTION '
1 16
Copies Code Name
1 1603
1 012.2
1 163
1 012.3
A 1 17
i 1 12
'Y 1 18
5% 1 122
r: i 1 1802
Q,‘ 1 15
hy 1 18
+ 1 1502
- 4 1843
@g 1 1504
1 19
\ 1 1505
1 194
1 1506
1 27
2 152
1 28
3 1521
: 10 5211.1 Reports Control
3 1522
1 522.1 TIC (C)
1 1523
1 522.2 TIC (A)
1 154
1 1541
15 . 1542
3 1543

24




<

' DTNSRDC ISSUES THREE TYPES OF REPORTS:

1. DTNSRDC reports, a formal serles, contain information of permanent technical
value. They carry a consecutive numerical identification regardless of their classification
or the originating department.

2. Departmental reports, a semiformal series, contain information of a preliminary,
temporary, or proprietary nature or of limited interest or significance. They carry a
departmental alphanumerical identification.

3. Technical memoranda, an informal series, contain technical documentation of
limited use and interest. They are primarily working papers intended for internal use.
T They carry an identifying number which indicates their type and the numerical code of
the originating department. Any distribution outside DTNSRDC must be approved by
the head of the originating department on a case-by-case basis.

X
u
Y
Lat,
i
NI
.

APty
o~

Y N
K -
, I P

Pk T




